中国药房杂志

期刊简介

               《中国药房》杂志是中华人民共和国卫生部主管,中国医院协会、中国药房杂志社主办的国家级、国内外公开发行的药学技术类刊物。本刊以构建药品研制、生产、经营、临床应用及监督管理间的桥梁为己任。读者对象主要为从事医院药房(药剂科)、社会药房(店)工作的各级各类人员以及药品研制、生产、经营、临床应用和监督管理人员。本刊每月上、中、下旬出版。上旬刊为“药房与药事版”,主要栏目包括:药业专论、医药热点、药物研究、市场经纬、药房管理、制剂技术、医院制剂、新药和辅料、药品检验、药品监督、综述讲座、药师之友、社会药房等;中旬刊为“药房与临床版”,主要栏目包括:药物经济学、用药分析、临床药学、药物配伍、药物与临床、临床荟萃、药物警戒、不良反应监测、综述讲座等;下旬刊为“药房与中药版”,主要栏目包括:中药论坛、中药研究、中药房管理、中药应用、民族医药、中药检定、中药制剂、中药视窗、中药企业、综述讲座等。稿约内容主要有:业界普遍关注的热点、焦点问题;对医药行业有指导意义的理论研究;原始实验研究;医药市场动态分析与预测以及与市场有关的“大政小事”;医院药房(药剂科)管理经验交流;药物经济学方法学研究和应用实践;大样本的医院用药情况分析;新药、进口药品临床药理;合理用药资料总结;药品的监督、检验、不良反应监测工作探讨;新药或药学新进展综述;海外药房事务;中药房业务;医药工、商企业及品种介绍;药店管理、经营经验介绍;继续医学教育,等等。                

医学统计中t检验的常见误区与改进

时间:2025-07-15 16:04:37

在医学论文写作中,统计方法的正确应用是确保研究结论可靠性的基石。然而,许多新手研究者常因对统计原理理解不足或操作不规范而陷入误区。以t检验为例,这种用于比较两组均值差异的经典方法,在实际应用中却存在以下高频错误及改进策略:

误区一:忽视正态性检验的适用条件

t检验的核心假设之一是数据服从正态分布,尤其在样本量较小时(如n<30),必须通过Shapiro-Wilk或Kolmogorov-Smirnov检验验证差值正态性。常见错误是直接默认数据符合正态性,导致检验效能下降。例如,某研究比较两种降压药效果时,未对20例患者的血压差值进行正态检验,可能得出虚假显著性结论。解决方案是:当样本量少时,优先绘制反趋势正态概率图并报告Lilliefors显著性水平;若数据非正态,可采用Wilcoxon符号秩检验等非参数方法替代。

误区二:混淆独立样本与配对样本的设计类型

配对t检验要求两组数据存在天然配对关系(如同一患者治疗前后测量),而独立样本t检验适用于完全不同的两组对象。曾有研究错误地将50例实验组与50例对照组的血糖值进行配对分析,忽视了两组样本的独立性。关键区别在于:配对检验通过消除个体间变异提高灵敏度,其标准误计算依赖于配对差值的协方差。因此,研究设计阶段必须明确数据关联性,并在方法学部分清晰标注使用何种t检验亚型。

误区三:样本量不足或误用大样本规则

虽然t检验对样本量无严格下限,但小样本(如n=10)会大幅增加II类错误风险。相反,当样本量极大(如n>1000)时,t检验会过度敏感,微小的均值差异也可能呈现统计学显著性,但无临床意义。典型错误是某百例肿瘤标志物研究未计算效应量,仅报告p<0.05即断言差异重要。建议遵循双重标准:小样本研究需预先进行功效分析确保至少80%检验效能;大样本研究应结合效应量(如Cohen’s d)和置信区间综合解读。

误区四:忽略方差齐性前提

独立样本t检验要求两组方差齐同,但新手常遗漏Levene检验步骤。例如,比较新旧疗法时,若实验组方差显著高于对照组(F=5.2, p=0.02),仍使用常规t检验会导致结果偏倚。此时应选择Welch校正t检验,其自动调整自由度以应对异方差情况。具体操作建议:在SPSS等软件中勾选"Equal variances not assumed"选项,并在论文中注明校正后的自由度值。

误区五:多重比较未校正

在同时比较多组均值时(如三种药物剂量组),连续进行两两t检验会使整体I类错误率膨胀。某镇痛药研究对A/B、A/C、B/C三组分别做t检验,未校正α水平,假阳性率实际可达14.3%。正确的处理方式是:若计划性比较少于3组,可采用Bonferroni法调整显著性阈值(如0.05/3=0.017);若探索性分析涉及多组,建议改用ANOVA联合事后检验。

统计方法的准确描述如同医学诊断的鉴别诊断流程——每个假设条件都需系统验证。研究者应在论文方法部分明确报告:正态性检验结果、t检验类型选择依据、效应量指标及多重比较校正方式。通过规范化的统计叙事,才能让数据真正成为支撑医学发现的坚实证据链。